
JNTERNATIONAL JOURNAL FOR NUMERICAL METHODS I N  FLUIDS, VOL. 20, 157-168 (1995) 

APPROXIMATION OF SHALLOW WATER EQUATIONS BY 
ROE’S RIEMANN SOLVER 

D. AMBROSI 
CRS4. Via Nuxrio Suuro 10, 09123 Cuyliuri, 11uIy 

SUMMARY 
The inviscid shallow water equations provide a genuinely hyperbolic system and all the numerical tools 
that have been developed for a system of conservation laws can be applied to  them. However, this system 
of equations presents some peculiarities that can be exploited when developing a numerical method based 
on Roe’s Riemann solver and enhanced by a slope limiting of MUSCL type. In the present paper a TVD 
version of the Lax-Wendroff scheme is used and its performance is shown in ID and 2D computations. 
Then two specific difficulties that arise in this context are investigated. The former is the capability of this 
class of schemes t o  handle geometric source terms that arise to  model the bottom variation. The latter 
analysis pertains to  situations in which strict hyperbolicity is lost, i.e. when two eigenvalues collapse into 
one. 
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1. INTRODUCTION 

In recent years there has been a great effort devoted to the definition of efficient and accurate 
numerical methods for hyperbolic systems and most of all the Euler equations of gas dynamics. 
From the mathematical point of view the hyperbolic equations are well known to admit 
discontinuous solutions and their numerical integration is expected to compute such dis- 
continuities sharply and without oscillations. This result has been achieved by several ap- 
proaches, which can be grouped into the large family of high-resolution shock-capturing schemes. 
Therefore it appears natural to apply this knowledge to other hyperbolic systems mathematically 
modelling different physical phenomena. 

When considering shock-capturing schemes, the most popular method for solving hyperbolic 
systems is probably Roe’s solver, originally proposed for approximating the Euler equations.’ 
One of its main attractive features is the capability to capture discontinuities without any 
shock-fitting procedure. 

In this paper we want to extend Roe’s scheme to the shallow water equations (SWEs), stressing 
some peculiarities that arise in this context. The straightforward extension of this scheme in the 
SWE framework has recently been done in two different Here we use a limiting 
procedure slightly different from the one used therein, which allows us to obtain second-order 
accuracy in time in a single discrete step; this scheme can be seen as a slope limitation of the 
celebrated Lax-Wendroff ~ c h e m e . ~  Moreover, we focus on several peculiarities that arise when 
considering the solution of some typical SWE problems, which have no counterpart in the Euler 
equations. 
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We consider two different examples in which this situation occurs. The former is the dam 
break wave on a dry bottom; when drying-wetting is present, two eigenvalues collapse into one 
and the system of equations is not strictly hyperbolic any more. For this problem we reconsider 
the classical exact solution using some mathematical tools of hyperbolic systems theory and we 
compare exact and numerical solutions. The second case we consider is the computation of the 
still water problem with a sloping bottom. Here the bottom variation is taken into account by 
a geometric source term. Its effect on the numerical solution of the SWEs by the present approach 
is described and discussed. 

2 .  SHALLOW WATER EQUATIONS 

The SWEs in integral form read 

:t ju u(x, t )  do + (fn, + gn,) dT = S(X, t )  do V t  E [0, TI, 

where R c R 2  is the domain (not necessarily filled by the fluid), o is any open subset of R with 
boundary and n is the outward unit normal. Symbol explanation is as follows: 

(2) u = (h,  4x3 4,IT, 

Here q(x, t )  is the unit-width discharge, - h,(x, y )  is the depth under a reference plane, ( ( x ,  y, t )  
is the elevation over the same reference plane, h(x,  y, t )  = ho + ( and g is the gravitational 
acceleration (see Figure 1); the source term accounts for the bottom slope and r is the boundary 
of 6. In the present study we omit to consider the bottom friction and the turbulent dissipation; 
anyway, from a stability point of view it can be seen that they give a positive contribution to 
the energy norm.5 

I" 

Figure 1. Elevation and depth 
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We can adimensionalize the SWE system by choosing an appropriate length H .  Substituting 

we get, omitting the prime from now on, 

+ “>’, ’’ h ’ h  2 
T 

s = (0, h 2, h 2) . 
The differential form of the SWEs reads 

or, evaluating the spatial derivatives, 

a U  au aU 
at ax ay - + B - + C - = S, 

where 

(9) 

are the Jacobian matrices of the fluxes f and g respectively. 
Equations (8) are in conservative form, i.e. all the spatial derivatives of the unknowns are in 

the form of a divergence operator. In the case of a flat bottom (h ,  = 0) the right-hand side 
disappears and we get a strong conservation form. This ensures that a proper discretization of 
system (1) will automatically capture the weak solutions of the integral form by virtue of the 
theorem of Lax and Wendroff.6 It is worthwhile to remember that the SWEs have an infinite 
hierarchy of conservative forms expressing the conservation of mass, velocity, discharge rate, 
energy and so on:’ 

-~ a h + a ~- (hu) = 0, 
ax ax 

A u + (? + h )  = 0, ax ax 2 

a 
ax ax 

a ( v 2 h  + “2‘> + -- a (~ v3h + oh’) = 0, 
ax 2 ax 3 

Any two of these equations are equivalent to one another provided that the solution belongs 
to C ’ .  However, when shocks (i.e. bores) are involved, this equivalency does not exist any more, 
because the Rankine-Hugoniot condition (and not the differential equations any longer) needs 
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to be satisfied. Consequently, in this latter case the solution depends on the chosen variables. 
Therefore it is important to stress that the present formulation is based on the requirement that 
elevation and unit-width discharge are conserved. 

The two-dimensional system (9) is hyperbolic; indeed, for any unit vector n = (n,, ny)T the 
matrix A = Bn, + Cn,, is diagonalizable with real eigenvalues and takes the explicit form 

0 
(1 1) 

Here we are making use of the variables celerity c and velocity v which are related to the 
conservative ones as follows: 

c2ny - u y v - n  uynx uyny + v - n  

C' = h, hv = 4. (12)  

The eigenvalues of the matrix A are 

2' = v - n  - c, i2 = v - n ,  A 3  = v - n  + c. 

The right eigenvectors are respectively 
T r' = (1, u, - cn,, u, - cn,) , r2 = (0, n,, -nJT,  r3 = (1, u, + cn,, uy + (14) 

the left eigenvectors are 

1' = (4 + (v - n)/2c, - n,/2c, - n , / 2 ~ ) ~ ,  

l2 = (uynx - uxny,  n,, -n.JT, 

I3 = (i - (v - n)/2c, nx/2c,  n , / 2 ~ ) ~  

and of course r i - l j  = hi j .  

3. FINITE VOLUME DISCRETIZATION 

In this section the finite volume numerical method is introduced. To be more general, the 
notation used here refers to unstructured grids, although the 2D computation that will be shown 
in the last section involves a structured grid. 

To obtain a finite volume discretization of (l), we start partitioning 51 by a finite union of oi 
(the 'control volumes', which are actually 'control surfaces') with boundary Ti. Introducing the 
cell-averaged variables 

Ui = ( Ig, u do)/&, where C i  = lo! do, 

we get the discrete counterpart of the adimensional version of (1):  

d 
- Ui + I (fn, + gn,) dT = 0. 
dt xi r, 

A Euler forward explit discretization in time gives 

u;" - u; + ~~ " I z"dT =0 ,  
Ci r, 

where z" = Pn, + gnny and At is the time step. 
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To discretize in space, we suppose the flux constant along each side of the area Xi.  Therefore 
the total flux through Ti is the discrete sum of the fluxes through every side of X i :  

At 
Ul' ' - Ul + ~ 1 Z:k Arik = 0, 

k 

where ATik is the length of the segment between the volumes i and k ,  ZYk represents the 
discretization of z on r i k  at time n and the summation index runs over all the boundary segments 

Finally, the spatial discretization consists of determining how the numerical flux of zyk depends 
on the states Ul and Ui; we have an upwind scheme if this dependence is not symmetric with 
respect to each face but shifted in order to favour one of the volumes according to the value of 
the solution itself. 

Precisely, to find the numerical flux between the volumes Ci  and C,, we consider the numerical 
solution of the 1D Riemann problem 

of x i .  

= 0, (20) 
M s ,  t )  + dZ(U(S, t ) )  

at as 

where z = fn, + gn, and the initial condition is u = ui for s < 0 and u = u, for s > 0. This 
hypothesis entails that we restrict ourselves to consider only waves travelling normally to the 
boundary segment. 

We define the numerical flux Z(Ui, uk, n) as* 

where iP, fp  and 'ip are defined as 

ip(ui, uk, n) = rP(h, O, A), 
and f i  and O are the Roe-averaged quantities 

A ip(ui, u,, n) = ~ ( h ,  O, A), ip(ui, uk, n) = ~ . p ( f i ,  9, A) (22) 

This definition of 2 ensures that the properties prescribed by Roe for the numerical flux of a 
conservative law are satisfied' and in particular it ensures conservativity : 

z(ui) - z(uk) = 2(ui - uk). (24) 

Finally, the first-order numerical discretization we use to approximate problem (1) is 

where Z is as defined in (21). 
It can be easily shown that for a linear hyperbolic system of equations the above method 

based on the solution of the Riemann problem will reproduce a first-order one-sided scheme. 
It is rather intuitive that an improvement in (25) can be achieved by supposing a linear (rather 
than constant) solution in every volume. It can be shown that such a modification yields an 

* For notational simplicity we omit the time index from now on without any possibility of confusion, because the flux 
always depends on the solution at time I". 
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algorithm which is analogous to the celebrated Lax-Wendroff ~ c h e m e . ~ . ~  On the other hand, i t  
is also well known that on a Cartesian mesh such a second-order finite difference scheme, 
although very accurate in the smooth solution regions, causes unphysical oscillations near the 
discontinuities. To obviate this undesired effect, it is necessary to modify in a suitable way the 
slopes in every volume. This goal can be achieved by the introduction of a 'flux limiter', an 
extensive review of which can be found in Reference 8. The generic flux 2 obtained by this 
procedure can be written as 

I, = z l o w  + 4(Zhigh - G o w h  (26) 

where the flux limiter 4 depends on the local solution gradient as follows: it is about zero near 
the discontinuities and about unity in the smooth flow regions. These ideas were originally 
introduced by van Leer with his MUSCL scheme.' 

In the following test cases we have used the van Leer flux limiter, which for the sake of 
simplicity we write here for the case of a linear scalar equation u, + uu, = 0 with u > 0: 

Finally, considering the definition in (21) as the low-order flux, the slope-limiting correction we 
use in the present context is 

where Asik is the distance between the centroids of the ith and kth volumes, the index q indicates 
the 4th component of a vector, 

and the index i l  indicates another volume side suitably chosen. In the case of structured meshes 
the i l  th  side will be the backward or the forward one depending on the sign of irk. In smooth 
flow regions 4 z I and the Lax-Wendroff scheme for the characteristic variables may be 
recovered. The details of this scheme may be found for the Euler framework in References 4 
and 8. It is very attractive because it preserves the Lax-Wendroff scheme advantages when the 
solution is smooth and, in particular, second-order accuracy in time is achieved in one integration 
step. 

The wall boundary conditions are implemented in a standard way defining a dummy 
reflection cell out of the boundary with the same value of the solution as in the boundary cell, 
except for the normal velocity which has the same magnitude but opposite sign. The Riemann 
problem with these initial conditions gives a solution u with zero normal velocity on the 
boundary, which is exactly what defines the solution therein. 

4. DAM BREAK WAVE O N  DRY BOTTOM 

In this section we recall the exact solution of the classical dam greak problem using hyperbolic 
systems theory. This derivation will be helpful in discussing the numerical resutls in the last 
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section. Consider the 1D SWE differential system 

d d 
. h + - - q = O ,  

at i?x 

to be solved with the initial conditions 

uL = (H,O)  ifx < 0, 
u = {  

UR = (0,O) if x > 0. 

This problem can be solved by simple wave theory:' the left and right states can be connected 
by just one wave of rarefaction type. In fact, in the 1D framework we have just two eigenvalues, 
I' = u - J h  and A2 = u + J h .  We look for a similarity solution u(x/t) such that for x/t = 1.' 
is it equal to the left state, 

( 3 1 )  

i.e. h( - J H )  = H and q( - J H )  = 0. Under this assumption the partial differential system (30 )  
becomes a system of ordinary differential equations 

( 3 2 )  

where the prime denotes the derivative with respect to x/t .  Here we can equivalently use the 
primitive variables h and u, because the solution is assumed to be smooth. The integration of 
(32 )  together with boundary conditions ( 3 1 )  gives the solution 

U( - J H )  = ui,, 

- ( ~ / t ) h '  + hd + oh' = 0, -(x/t)u' + UD' + h = 0, 

h(x/t) = h(2JH - x/t)', o(x/t) = 3(x/t + JH) ( 3 3 )  

and its domain of definition is bounded by - J H  < x/t. Moreover, we note that the value of 
the conservative variables (h,  q)  given by ( 3 3 )  coincides with the right state for x/t = 2,,'H; 
therefore this wave can be extended to the ri ht until the state uR is reached and the global 
solution is finally given by ( 3 3 )  defined in - ] H  < x/t < 2 J H .  

It should be remarked that this solution is only valid using the unknowns (h, 4). If the primitive 
variables are used, the use of the Rankine-Hugoniot condition leads to a very different weak 
solution composed of two jumps. 

5. STILL WATER ON UNEVEN BOTTOM 

The numerical method proposed in Section 3 provides accurate results on test problems with a 
flat bottom, as will be shown in the next section for several test cases. At a first look such 
effectiveness seems to be lost when the bottom slope varies. Let us consider again the 1D SWEs 
with initial conditions 

Mx, 0) = ho(x), q(x, 0) = 0, ( 3 4 )  

where h,(x) is a non-constant function. It is trivial to check that the exact solution coincides 
with the initial conditions at any time (i.e. nothing moves). Unfortunately, this feature is not 
ensured by our discrete solution. In fact, suppose that we want to update the U,-value using 
the ID counterpart of the first-order scheme (25). At the first time step we would have 

At 
AX 

Uj = Ug - .. [F(Uj, Uj+ 1) - F(Uj- 1, Uj)] + AtSj, ( 3 5 )  
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where Sj is a discretization of the source term s in the jth interval and 

F(Uj, Uj+ 1) = f(Uj) + 1 ?”/i”[I” * (Uj+ 1 - Uj)], 
i t ’  < 0 

F(Uj- Uj) = f(Uj- + .C iPAP[IP. (Uj - Uj- l)]. (37) 
I.p < 0 

In this 1D case the eigenvalues and eigenvectors are 

A1 = u - c, 

r1  = ( 1 ,  u - c ) ~ ,  

I ’  = ((1 + v/c)/2, - 1/2c)T, 

A2 = 0 + c, 

r2 = (1, u + c ) ~ ,  

l2 = ((1 - u/c)/2, 1/2c)T. 

(38) 

(39) 

(40) 

By some calculations it may then be found that 

where t j+ l j 2  = j [ ( h j +  + hj)/2]. As may be easily seen, for any discretization of the source term 
the updated value of h is different from ho, which is fairly undesirable. However, the error for 
the computed solution is first-order. In fact, let us suppose that we discretize the source term as 

1 

Performing a Taylor series expansion of the unknowns around x = xj, we find the error after 
a single time step, defined as the difference between the exact and the computed solution: 

At  

Ax 
u 1 .exact (xj) - Uj = ~ [F(Uj, U,+ 1) - F(Uj- 1, Uj)] + AtSj 

where 

Therefore, although it might be very disappointing that the constant still water solution is not 
exactly computed, it is worthwhile to remember that the formal order of accuracy of the scheme 
is achieved. Moreover, the form of the error that appears in (43) shows that the loss of accuracy 
becomes more severe as h gets nearer to lower values, i.e. on approaching the coast. 

The reason for this behaviour is that in a Godunov-type approach the solution is computed as 
a flux balancing of waves that do not really exist. Riemann solver schemes rely on the assumption 
of straight characteristic slopes, which is no longer satisfied when source terms appear. A 
discussion about this intrinsic limitation of Riemann solvers is given in Reference 10 and an ad 
hoe remedy in a specific case is described in Reference 11. However, when the exact solution is 
not constant, the present splitting approach shows other attractive features over schemes that 
compute the above solution exactly, as could be the case of the classic McCormack scheme.I2 
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6. NUMERICAL RESULTS 

6.1. Dam break on dry bottom 

Here we consider the numerical approximation of the problem described in Section 4 with 
the aim of comparing numerical and exact solutions. This SWE test case has the peculiar feature 
that for x / t  + 2 J H  the elevation goes to zero while the velocity retains a finite value. Therefore 
the two eigenvalues collapse into A = v,  the Froude number Fr = v/c goes to infinity and the 
system is not strictly hyperbolic any more. At x / t  = 2JH the governing equation is therefore 
do/dt = 0 and the entire system can be restated as a free boundary p r ~ b l e r n . ' ~ . ' ~  

The initial conditions we have used are 

UL = (10,0), UR = (0,O). (45) 

We consider a domain of length 100 divided into 150 equally spaced intervals. We perform 70 
interations in time using a time step Ar = 01. The results are shown in Figure 2. 

The discretization is monotonic and accurate everywhere. The computations are performed 
using the van Leer limiter, except near the smallest h(h < lo-') where a first-order approximation 
is used to avoid negative elevation at all. The error is negligible except in a small neighbourhood 
of x/r = 2JH were strict hyperbolicity fails; anyway, the error is relevant only for the velocity, 
which is discontinuous therein. 

100 

a o  

6 0  
= 

4 0  

2 0  

0 4  

10.0 I 

10 

Figure 2. Dam break on dry bottom: comparison between numerical results (circles) and analytical solution (line) 
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Figure 3. Dam break on wet bottom 
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6.2. I D  durn breuk in u busin 

This second test is found more often in the literature: analogous computations for comparison 
can be found in References 2 and 3. The initial states we consider are 

Note that the non-zero elevation of the right state avoids flooding and all associated difficulties. 
The computational domain length is 100, 100 spatial nodes are used, the time step is 0.2 and 
60 iterations in time are performed. 

In Figure 3 the elevation h, velocity u, discharge q, celerity c and Froude number Fr versus 
x are plotted. The bore wave is captured in one cell and oscillations are absent. The results are 
very similar to those presented in Reference 3; in both cases the bore wave is captured in one 
cell, although in Reference 3 the more compressive superbee flux limiter is used. 

6.3. 2 D  durn breuk in u reservoir 

The basin geometry and dimensional parameters used in this computation are the same as 

The initial states are 
suggested in Reference 15 and may be seen in Figure 4. 

uL = (10 m, 0 m2 s - ' ,  0 m2 s-I),  uR = (5 m, O m2 s -  ', O m2 s-I).  (47) 
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Figure 4. Reservoir geometry for partial dam failure test 

A uniform Cartesian grid of 40 x 40 volumes is used and 20 iterations in time are performed 
until the final time of 7.2 s. A comparison with the results presented in References 2 and 3 is 
not easy, because isosurfaces are less easy to read than 1D graphics. However, the solutions 
look very similar. The only difference is that the wave rising up the left wall in Reference 3 seems 
to be higher than the level in the rest of the box, while in Reference 2 the present work (Figure 
5) it looks lower. 
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8 -  

7 -  

6 -  

5 -  

4 -  

150 

Figure 5. Partial dam break in reservoir 
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7. CONCLUSIONS 

Roe’s approximate Riemann solver enhanced by slope limiting has been applied to the shallow 
water equations. Some peculiar features that arise in this context are focused on and discussed. 
The analysis carried out and the numerical results presented suggest the following remarks. 

1. It has been pointed out previously that mathematical difficulties can arise in the dry-wet 
region. However, using the present approach, no front tracking is necessary for the dry-wet 
boundary, the solution retains monotonicity everywhere and the inaccuracy found in this 
region does not affect the global solution quality. 

2. The present scheme combines second-order accuracy in time if the solution is smooth with 
the capability to compute discontinuities sharply and monotonically as standard first-order 
schemes do. 

3. We have focused on the difficulties that arise when dealing with varying bottom terms by 
the flux difference approach, giving a quantitative evaluation of the error of the scheme. 
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